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Sufficient stability conditions (1.8). (1.10) are defined. Stability for large Reynolds num- 

bers R is analyzed by asymptotic and numerical methods; it is shown that the flow is 

stable for R -, 00 
1. The stability of plane Couette flow is determined by the eigenvalues of the prob- 

lem condidered in p] 

(Da - a2)2cp-iiaR(y-c)(Di-ua")cp = 0 

Dq+i)=cp(fl)=O (-.I\< Yb 1) 
(D = 2) (1.1) 

The flow is stable if for any values of the Reynolds number R and of the wave num- 
ber a, all of the eigenvalues c = C, f iq have a negative imaginary part. 

Investigators [‘2 - 8] of the problem (1.1) assumed the flow to be stable; this assump- 
tion had not been completely substantiated thus far, however, because either particular 
values of parameters,fi and a, or special eigenvalues only had been considered. The 
particular case of R +co is considered below, but in contrast to papers [‘2 and 5 - 71 

only one of the quantities (* ) e = (a~)_7,, 6 = ae 

which express the eigenvalues is assumed to be small. 
The characteristic relationship of problem (1.1) can be presented in the form c2] 

‘) The case of small 8 and arbitrary, 6 was inaccurately analyzed in [S], see l2 and 51. 
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Fig. 1 

z,(a)z,(-a)-zz,(-a)z,(a) =o (1.2) 

Zl.2 (4 = j+ e-h,2 @I) d’l 
Q- 

q*=f(++-cc) (1.3) 

Here s#t,a are independent solutions of Eq. 

if’ + q$ = 0 (1.4) 
In the following use will be made of functions rZ] 

4&l) = &J exp (qz +1/sizS), P-ldz 

the integration path of which is shown on Fig. 1. 
We may take r2’2] 

$1 = A,, $2 = WA, (4 (0 = &d”) 

(1.5) 

(1.6) 

as the solution of (1.4). 
Substitution of (1.6), (1.5) into (1.3) and intergation over 1 yields 

2, (6) = I(69 tl,) - I(& 0, Zs(Q= [(J/o, WV+)---1(3/o, olj_) 

1(6,11) =&I exp (q8 -I- qz + 1/&z3) -+&. (1.7) 

The integration path is here the same as in (1.5), and lies to the left of the polez=-6. 
As regards the eigenvalues of problem (1. l), it is known [2 and 31 that if c =- c, $ iq 

is an eigenvalue. then c = -c, + ici is also an eigenvalue, and [c, 1 a-1 
Purely imaginary eigenvalues correspond (according to [4]) to damped perturbations, 

provided the relation c1 + a/R ( 0 is fulfilled. It is shown in the Appendix that 
this relation is fulfilled if 

aRIc,IQ (I.81 
It follows from this that the flow is stable for aR < 6. In connection with this we 

shall consider the case of 6 # 0 on the assumption that 

E + 0, Ic, 1 - 1 (1.9) 

It is.shown in the Appendix that the flow is stable when 

6 > (27/26e)'/~ z 0.7 (1.10) 

However for the sake of completeness of the picture, the case of an arbitrary 6 is con- 
sidered. 

2. In the case of (1.9) when c, - -i 

Irl+l - l/e +oo , 8 = arg q+ =: 0 

.,nd the integrals (1.7) may be estimated for rl = q+ by the saddle-point method. The 

saddle-point contribution 
.Q =; q’/* &/‘ in 

the integral of (1.7) is 
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Here and below the argument of the power of a number is equal to the argument of 

the number multiplied by the exponent. 
For Iq+ I+ 00 and any values of b we have 

I@, rl+) = N (69 11,) (-‘/an < 8 < Vsn) (2.U 

1 t--89 V+) = iv (-6, q+) (-‘/an c 8 < Vsn) (2.2) 

I (d/W @rl+) = N (a I 0, W+) (--“lsn< e< ‘/I+) (2.3) 

I (-6/o, oq+) = N (--b/o, q+) + exp (--‘/db3) (--‘/g< 0 < ll6Jc) 
(2.4) 

In order to obtain an estimate of (‘2.4) homogeneous in 6. it is necessary for the inte- 

gration path to lie to the right of pole z = 610, hence the appropriate residue has 

been taken into account. 
All estimates (3.1) - (2.4) hold in the domain 

A- llzn < 8 \< ‘/en -A (A>@ 
From (1.7). (2. l), (2.3) we obtain 

2, (-6) = --I (-6, Q), zz (6) = I (6/% WV+) 

which is correct to within exponentially small terms. The remaining expressions for 2 

depend on magnitude A = Re (-Sq+ - V3q+%) 

Let h > 1. Then N is exponentially small in (8.2). and exponentially large in(P. 4), 

so that 
21 (6) = - 1 (6, V-19, 2s (-6) = I (-6/o, oq+) 

and relation (1.2) assumes the form 

ea=J (6, TJ,) - He-saJ (- 6, q_) = 0 (2.5) 

Tf a = con&, then,iYq+‘f* - ae’J* , and it becomes necessary to reject the terms 

0 (e’/n) in (2. 5). 
As the result (2.5) becomes the relation (“) 

A,, (q) + (acth 2a)e A_,(q) [1 + 0 te-*‘+I = 0 (2.6) 
At its limit for a+ 0, e=const <( 1 this relation is reduced to the equality derived 

earlier by other means 81. 
It is worth noting that this limit equality was obtained in c2] for I& # 0 the inaccu- 

racy in 123 is associated with the fact that there the ratio of rejected teims 0 (6q to 

those retained was - 62nAbn (q,) /A0 (q+) - a2” , which is small for small,a only. 

Inthecaseof f% --too,6 = con& we obtain from (2.5) correct to within terms of 

the order of exp (-4~) 

J (i3, q) E & 1 exp ‘T-+B’la “‘) dz E 5 PA_, (7) = 0 (2.7) 
n-0 

Here the second expression for J is derived from the first by taking an integration 

path lying outside the circle 1 z 1 = & (which is always possible), expanding ll(Z - 6) 

P) Here and in the following the subscript of e is omitted. 
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in a series in 6 / z = and integrating by parts . 
In the deriving (2.5) and (2.6) we assumed that the above quantity h > 1. 
If li < 1 (which is possible when 6-t = 0 (I?%)), then (2.7) is obtained from (1.2). 

(1.7) and (2.1) - (2.4) to within the terms 0 (exp */sr~+za). Thus. relations (2.5) and 

(2.7) are valid for all values of d. 

3. For e + 0 and finite a we find from (2.6) that A,, (9) = 0. The roots of 
this equation were analyzed in I2 and 5J, and correspond to damped perturbations. It 
remains to consider the case of finite b. 

The roots of Eq. (2.7) of large absolute value can be investigated with the aid of the 

assymptotic expression 

J (d, q) = I’+ + V_ + exp (qb + l/t, id*) (3.4) 

When deriving estimate (3.1) homogeneous in 6 , the integration path is taken to the 
right of pole z =.a; The quantities V* are the contributions of the saddle-points 

z = + ~0, and the third term of (3.1) is the residue of point z = 8. 
It ls convenient to present (3.1) in the form (3.2) 

J(i$ @/a'") = T/hq-%(q + b2pa) exp(t/, id3 -8+)- COSZ + @bf'ssin z 

The flow is unstable if arg q > 1/6n for any of the roots of Eq. J = 0. Assuming 

tl ‘la = re’q, &)=8/t 

and assuming that cp, p are small, we obtain from (3 2) 

cos x = v; r*‘* e+‘r’ = F (r, a), x = (l/ln+ 3/3 r3) + i (2r9q) = a + ib (3.3) 

For 1arge.F .it can be assumed that cos x = i/2 exp (+- ix). Here and below the 
upper sign corresponds to the “upper” roots in which cp > 0. 

A comparison of the amplitudes and phases of magnitudes appearing in (3.3) yields 

b=fln21Fl, a&*= 2nn ($7 = 112 6rr, 6 > 0. n > i) (3.4) 

From (3.4) follows 

r z r. F 11~6, ro* = 3n(fl -‘/d, q .z &I/% row3 In 21 F (to, 8) 1 (3.5) 

Expressions (3.5) show that with increasing 6 the two angles decrease, while the radius 
increases at the lower root and decreases at the upper root. 

Relationships (3.4) (3.5) are not valid when 

8-61 = 3-‘h ro* In (nro”) 

where F - J. The value of&is defined by the equality 1 F 1 = 1. 
For i!r c b1 the quantity 9 z 1/a61roa = ql is large, hence the number of upper 

roots in the disk r < r. exceeds that of the lower roots by 29, the total number of 
roots is approximately the same as in the case 6 = 0. 

For 6 = 00 Eq. (3.3) has the solution r~ = 0 
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xrn =a(r,) ==‘/,n+m (m> 1) (3.6) 

For the small divergence x = 2 - Z, we obtain from (3 3) 

x = (- ,)m’l F (F, , a) 

(8 1 -* al (3.7) 

It follows from this that points 
(3.6) are__stable focal points; spi- 
rals x (a). wind counterclockwise 

Fig. 2 around the focal points. 
For 6 > at each of the roots 

‘1 (a,) winds around one of the nearest focal points at which r, z r (a,). 
From this we obtain (*) m,-22n-l /aIf%ifi 
The winding stops when 

6-&Z 3+ riz In (s/lrtri) 

i. e. when the last term of (3.2) becomes comparable to FL The value of 6 s is defined 
by equality p = IF I. Th e number of loops is approximately equal to (* *) 

(9s - $t)/(2n) *.&(es - 6,)/(h) z (~nrm3)/@nVS 

in the domain E (6, < 6 ( oo) the residue in (3. l), (32) may be neglected (*‘“), 

and (3.3) can be written in the form 

e-s;x = (@p + l)/(i& - 1) 

Multiplication and division of this equation bv its comDlex coningate vields 

&?@b = i+P+P’ 

I-PfP” 

&to = i-P’-i VFP 

i-ps+i v/sp 
(3.8) 

It follows from (3.8) that the quantity a decreases in the domain &’ from a value 

ZZ, to the value nm., while angle 

cp = 1/er--3 ln[(l -t P + qW - P + P2)1 (3.9) 

increases from zero to its maximum value for p z 1 , and then decreases to zero. 
On the basis of the foregoing, we can expect that tar large ?b the pair of roots will vary 

with increasing 6 in the manner shown on Fig. 2. 
It will be seen from (3.5). (3.9) that for large n the angles cp < 1, hence the respec- 

tive perturbations are damped. 

The first pair of roots tl = ~1 -j- iv of Eq. (2.7) was analyzed numerically. The 
method of computation is given-in the Appendix, and the results are shown on Fig. 3. It 
follows from Fig. 3 and inequality (1.10) that the first pair of roots defines damped per- 
turbations, so that the flow is stable for e+.O and any a. 

*) It can be expected that for small n (when rpr-i) we have m=2n--t/sFs/,). 
**) It can be expected that for small. m (when,% ~1 1) the number of loops will be zero, 
i.e. the roots will tend aperiodically to points (3.6). 
l -) Asymptotic expressions in [6] do not take into account the residue. hence the results 
obtained in that paper hold within the domain E only. 
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4. The characteristic relationship for the case of 6 = 0, e > 0 is derived from 

(1.2). (1.7) by taking the limit as a -+ 0, e =const. This reiation can also be writ- 
ten in the form (cf. p]) 

(T = 2/e + q, w = earn) 

Equality (2.6) in which cc = 0 can be derived from this as e + 0 . For arbitrary e 
the roots rj were obtained by numericai methods (see Appendix). The results of compn- 
tation of the first pair of roots are shown on 

Fig. 4. The values of Y , as calculated in 
[8] for the first pair of roots, are shown by a 

dotted line. Damping of the respective per- 
turbations is apparently slowest with any e . 

0 / 2 0.f LE? 

Fig. 3 Fig. 4 

If this is so, then the results of [8] and Fig.4 imply that the flow is stable for cx = 0 
and any e . This and the results adduced in Section 4 show that instability is possible 
for finite values of R only. 

6. A ppsnd ix, ‘The characteristic relation obtained in [4] for problem (1. l), after 

substitution in its equation of ICY for y which figures there explicitly, was used as the 

initial relation in deriving (1.8). This relationship is of the form [4] 

A s 5 @t y aP, m, ,,dm~*n-s) k’*’ (A.11 

n-1 m=on=l 

where only such n are taken for which the number v = l/s @ - n - m) is an integer, 
and d= -ic+a/R, *(==alk, a=aR Jka 

- 22n+1 (44)*n-v 
4p*m*n @p-j-2)1 i (_‘)~(~~:‘),“!~,‘“,~~~ 

a=0 - 

Assuming in (A. 1) that k--i, and changing the summation sequence, we obtain 

AZ 5 DmAm=O, 
m-0 

D=aRd, A m = 8a Em, a, y (4az)” (lQ+Ryv 
n=v=o (A.21 
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B 
4m 

m, n, Y = m!(2n+l)I(6~+2n+2m+4)! ’ 
Y 

x 2 (-3)Q (3V+(; -q)!(6~+2n+2m+2-2q)! 

q=o -q)!(6v+h+i-2q)I 

Coefficients A satisfy inequality 

A m-1 > m’Arn (m > i) (A.3) 

because it is satisfied by the quantities Bm,I,yI for any,n, v. This can be verified by noting 

that bm,n,v is a sum with an alternating sign and terms monotonically decreasing in abso- 
lute value. Such a sum is not greater than its first term bm,n,v , and not smaller than the 

sum of its first two terms. Taking this into account, we obtain 

B 
3v(6v+2m-i) 

m-l. n, Y - m’Bm,n,v > bm-l R Y * . (3v+m+n)(6v+2in+2n-i) - 1 

- m2b m,n.v~bm-l n Y 
3v m 

1--- I I 3v+m 3v+m+lJa >O I 

Let us assume that D = y + i61 = 1 D 1 c i9 for certain values of the oarameters becomes 
purely imaginary, i.e. y = U. We then obtain from (A. ‘2) 

00 c0 

Ar E 2 (- l)m QamAam = 0, At E 2 (- l)m Qam+l Aam+1 = 0 (A-4) 
m=o m=o 

From this and (A. 3) follows that for 1 Q 1 = aI3 lcr I\< 6 the terms of sum Ai decrease 
monotonically in absolute value, so that .Ai > 0. This means that if 1 Q I( 6 then 

v = m (et i- al R) * 0 It is readily seen that y < 0, as this is true for ri = 0 (when 
roots D are real [3]), and functions D (R) are continuous. 

Other root estimates are derived with the aid of inequality [9] 
00 

m=o 

which is fulfilled for any cp, if coefficients. a,,, are positive and decrease monotonically 
with increasing m. From this and (A. 3) follows 

(m + n)’ A,,, 1 D 1” c*““+ # 0 

if 1 D 1 ( n + 4. This means that there are no roots in the domain 1 D 1 ( i , while in 
the domain y > - A - 1 the number of real roots does not exceed n in a similar man- 
ner we obtain from (A. 4) dn (Al, ~) 

d (- Q’)” 

(_ os)m (m + n)! 
ml Asm+2n+l > O 

m=o 

ifIQ1<2(2ir+3)Vn+f= Qn. This shows that in the domain 0 ( 1 P 1 ( 9, 
there are not more than n purely imaginary roots D = tQ. 

The following inequality [l] was used in the deviation of (1.10) 

a = aRc, (I# + aal,*) < aRZ0Zr - (Ias + 23Zra + a4Zos) 

where 
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and q ‘is the solution of problem (1.1). Because for any real constants f,.n 

then (* ) 

L= { +x~+6~‘++cp’i’~~=~‘~o’+(~--~~~~+~sa>0 
-1 

o < aRZda - II* (2~’ + 2% - ~1) - I,’ (a’ - k) < o 

if (aR)s < 4 (2~’ + 2~ - M (a4 - x1) 

and every multiplier in the right-hand side is positive. 
The right-hand side of the last inequality attains its maximum for 5 = 0, x = l/s aa 

and coincides with (1.10). 
The iteration process [IO] 

%+l= q& -m,. 6) (k>O) 

was used for machine computation of the roots of Eq. (i?. 7) where 

P(qJ)=+ + G&(f)’ + I,% ($)’ - $3 (g (A.5) 

J(“) = PJ (?l, is) / a$ 

and r),is sufficiently close to rl (6). The already known value of ‘1 (80) with 60 close to 
b; was taken as q. Values of ‘n for b = 0 were taken from p]. 

The series expansion of (2.7) and the relationship c‘2] 

fA ,,+a + q&+1 + &, = 0 (A.6) 

were used for computing ‘J . 
In order to utilize (A.6) it is sufficient to find coefficients A, (tl) for a = O,i,2 

These were determined with the aid of equalities 

A,(rl)= $j $4*+,(O) 
m=o 

(A.7) 

We note that the method of saddle-point makes it possible to derive 

I AI,, I = hl A I-” exp ‘/a n IIn I n I - 1 + l l&4 f,l (!I,, - 1, I n I + 00) 

hence expansions (A. 7), (2.7) are everywhere convergent. 
Equality (A. 7) is obtained from (1.5) by the series expansion of exp rlz , and term by 

term integration. Coefficients A,,(O) are determined with the aid of (A.6). provided the 
first three coefficients for n = O,l> are known. The latter are 

A, (0) = I,,, A, (0) = 33n-1 w [;-‘/I’“” _ /hinn] 
(n > 0) 

It is convenient to compute series A o,l,, (q) simultaneously. The derivatives of J 

are defined by equality 
J(“) = A, + J(“-‘1 6 (a > i) 

3 An incorrect expression was used in [l] for the integral of the L type, and consequently 
the relevant stability conditions derived there are incorrect. 
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The roots of Eq. (4.1) were calculated by the Newton method (Formula (A. 5) in which 
P = J / I’). Series (A. 7) were used for the determination of F.The exact Expression 
(4.1) was used with p = 1 T ria (ii 63 - Tf / T,) < 10. Negative magnitudes’ A were 

rejected in (4.1) for 10 < p < 40. For, fi > 40 ! Expression(i!.6) in which a = 0 was 
used for J . Computations were commenced with e = 0, and the initial values were 
taken from 123. 

Author thanks D. I. Fishchuk for carrying out a part of the numerical calculations. 
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